skip to main content


Search for: All records

Creators/Authors contains: "Solow, Andrew R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Habitat isolation and disturbance are important regulators of biodiversity, yet it remains unclear how these environmental features drive differences in parasite diversity between ecosystems. We test whether the biological communities in an isolated, frequently disturbed marine ecosystem (deep-sea hydrothermal vents) have reduced parasite richness and relatively fewer parasite species with indirect life cycles (ILCs) compared to ecosystems that are less isolated and less disturbed. We surveyed the parasite fauna of the biological community at the 9°50′N hydrothermal vent field on the East Pacific Rise and compared it to similar datasets from a well-connected and moderately disturbed ecosystem (kelp forest) and an isolated and undisturbed ecosystem (atoll sandflat). Parasite richness within host species did not differ significantly between ecosystems, yet total parasite richness in the vent community was much lower due to the low number of predatory fish species. Contrary to expectation, the proportion of ILC parasite species was not lower at vents due to a high richness of trematodes, while other ILC parasite taxa were scarce (nematodes) or absent (cestodes). These results demonstrate the success of diverse parasite taxa in an extreme environment and reinforce the importance of host diversity and food web complexity in governing parasite diversity. 
    more » « less
    Free, publicly-accessible full text available June 14, 2024
  2. null (Ed.)
  3. Ojaveer, Henn (Ed.)
    Abstract Northern sand lance (Ammodytes dubius) and Atlantic herring (Clupea harengus) represent the dominant lipid-rich forage fish species throughout the Northeast US shelf and are critical prey for numerous top predators. However, unlike Atlantic herring, there is little research on sand lance or information about drivers of their abundance. We use intra-annual measurements of sand lance diet, growth, and condition to explain annual variability in sand lance abundance on the Northeast US Shelf. Our observations indicate that northern sand lance feed, grow, and accumulate lipids in the late winter through summer, predominantly consuming the copepod Calanus finmarchicus. Sand lance then cease feeding, utilize lipids, and begin gonad development in the fall. We show that the abundance of C. finmarchicus influences sand lance parental condition and recruitment. Atlantic herring can mute this effect through intra-guild predation. Hydrography further impacts sand lance abundance as increases in warm slope water decrease overwinter survival of reproductive adults. The predicted changes to these drivers indicate that sand lance will no longer be able to fill the role of lipid-rich forage during times of low Atlantic herring abundance—changing the Northeast US shelf forage fish complex by the end of the century. 
    more » « less
  4. Abstract

    Investigation of communities in extreme environments with unique conditions has the potential to broaden or challenge existing theory as to how biological communities assemble and change through succession. Deep‐sea hydrothermal vent ecosystems have strong, parallel gradients of nutrients and environmental stress, and present unusual conditions in early succession, in that both nutrient availability and stressors are high. We analyzed the succession of the invertebrate community at 9°50′ N on the East Pacific Rise for 11 yr following an eruption in 2006 in order to test successional theories developed in other ecosystems. We focused on functional traits including body size, external protection, provision of habitat (foundation species), and trophic mode to understand how the unique nutritional and stress conditions influence community composition. In contrast to established theory, large, fast‐growing, structure‐forming organisms colonized rapidly at vents, while small, asexually reproducing organisms were not abundant until later in succession. Species in early succession had high external protection, as expected in the harsh thermal and chemical conditions after the eruption. Changes in traits related to feeding ecology and dispersal potential over succession agreed with expectations from other ecosystems. We also tracked functional diversity metrics over time to see how they compared to species diversity. While species diversity peaked at 8 yr post‐eruption, functional diversity was continuing to increase at 11 yr. Our results indicate that deep‐sea hydrothermal vents have distinct successional dynamics due to the high stress and high nutrient conditions in early succession. These findings highlight the importance of extending theory to new systems and considering function to allow comparison between ecosystems with different species and environmental conditions.

     
    more » « less
  5. Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteriaSynechococcusat the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundantSynechococcusand are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared withSynechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest.

     
    more » « less
  6. Abstract

    Synechococcusis a widespread and important marine primary producer. Time series provide critical information for identifying and understanding the factors that determine abundance patterns. Here, we present the results of analysis of a 16‐yr hourly time series ofSynechococcusat the Martha's Vineyard Coastal Observatory, obtained with an automated, in situ flow cytometer. We focus on understanding seasonal abundance patterns by examining relationships between cell division rate, loss rate, cellular properties (e.g., cell volume, phycoerythrin fluorescence), and environmental variables (e.g., temperature, light). We find that the drivers of cell division vary with season; cells are temperature‐limited in winter and spring, but light‐limited in the fall. Losses to the population also vary with season. Our results lead to testable hypotheses aboutSynechococcusecophysiology and a working framework for understanding the seasonal controls ofSynechococcuscell abundance in a temperate coastal system.

     
    more » « less